Chemotherapy and TRAIL-mediated colon cancer cell death: the roles of p53, TRAIL receptors, and c-FLIP.
نویسندگان
چکیده
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.
منابع مشابه
Molecular determinants of response to TRAIL in killing of normal and cancer cells.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a potent inducer of death of cancer but not normal cells, which suggests its potential use as a tumor-specific antineoplastic agent. TRAIL binds to the proapoptotic death receptors DR4 and the p53-regulated proapoptotic KILLER/DR5 as well as to the decoy receptors TRID and TRUNDD. In the present studies, we identifi...
متن کاملIdentification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cell lines, whereas normal cells appear to be protected from its cytotoxic effects. Therefore TRAIL holds promise as a potential therapeutic agent against cancer. To elucidate some of the critical factors that contribute to TRAIL resistance, we performed a genetic screen in the human co...
متن کاملTargeting Bcl-xL in esophageal squamous cancer to sensitize to chemotherapy plus TRAIL-induced apoptosis while normal epithelial cells are protected by blockade of caspase 9
TRAIL induces apoptotic cell death upon binding to either of two proapoptotic TRAIL receptors, TRAIL R1 (DR4) or TRAIL R2 (KILLER/DR5). Activation of the proapoptotic death receptors by TRAIL engagement induces the formation of a death-inducing signaling complex (DISC), which consists of receptor, FADD, as an adaptor, and caspase 8 as an initiator caspase. Once the DISC is formed, the caspase 8...
متن کاملImplication of NF-κB and p53 in the expression of TRAIL-death receptors and apoptosis by apple procyanidins in human metastatic SW620 cells.
INTRODUCTION The nuclear factor-kappaB (NF-NF-κ) has been shown to upregulate pro-apoptotic mediators such as TRAIL-DR4/-DR5 receptors and the p53 transcription factor depending on the type of stimulus and the cell type involved. Previously, apple procyanidins (Pcy) have been shown to upregulate the expression of TRAIL-DR4/-DR5 and thereby overcoming the resistance of human colon cancer-derived...
متن کاملThe clinical trail of TRAIL.
The naturally occurring tumour necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis through two death receptors, death receptor 4 (DR4) and death receptor 5 (DR5), that are expressed on the cell membrane. Binding of the ligand to the death receptors leads to activation of the extrinsic apoptosis pathway. Chemotherapy on the other hand stimulates the intrinsic apoptosis pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2005